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1. Learning Outcomes: 

After studying this lesson, reader should be able to 

 derive one - dimensional wave equation; 

 derive two - dimensional wave equation; 

 derive  one - dimensional heat conduction equation; 

 derive Laplace's equation;  

 state conservation law and derive Burgers equation; 

 

 

 

 

 

 

2. Introduction: 

In our day to day life, we face problems arising from different disciplines - 

physics, chemistry, biology, sociology, management, finance etc. 

Mathematical modelling consists of simplifying the real world problems 

and representing them in mathematical language, as well as solving the 

mathematical problems and interpretation of these solutions in the real 

world language. At some point of time, while studying mathematics, we 

must have solved problems around us. So far the physical systems have 

been primarily studied by ordinary differential equations. Now we are 

interested in all those phenomena (or physical process) that requires 

partial derivatives in the describing equation. Partial differential equations 

are frequently used to formulate the laws of nature and to study the 

physical, chemical and biological models. In this chapter, we will study 

the partial differential equations representing the  mathematical models of 

physical problems in detail.  
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3. Mathematical modelling of the vibrating string:  

The motion of vibration of a tightly stretched, flexible string is the most 

interesting and important problems in applied mathematics and 

mathematical physics. It was modelled approximately 250 years ago and 

still widely used as an excellent introductory example.  

 

 

 

 

 

 

Fig 1(a) Deformed, flexible string of length l at an instant t. 

Let the length of the stretched string, which is fastened at each end, is l. 

we wish to get a describing equation for the deflection u of the string for 

any position x and for any time t. Consider a differential element of the 

string at a particular instant enlarged in Fig 1(b). 

 

 

 

 

 

 

 

 

 

 

 

Fig 1(b) Small element of vertically displaced string 
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We make the following assumptions to obtain a simple equation 

describing the vibration of the stretched string. 

 

1. The string is elastic and flexible and therefore offers no resistance 

to bending so that no shearing force exists on a surface normal to 

the string. 

2. The tension is so large that the weight of the string is negligible. 

3. There is no elongation of a single segment of the string and hence 

the tension is constant ( Hooke’s Law ). 

4. The slope of deflection curve is small. So if θ is the inclination angle 

of the tangent to the deflection curve then we can replace sinθ by 

tanθ. 

5. The deflection is negligible as compared to the string's length so 

that the resulting change in length of the string has no effect upon 

the tension. 

6. There is only pure transverse vibration, i.e., the motion takes place 

entirely in one plane and every particle moves at right angles to the 

equilibrium position of the string in this plane. 

 

 

 

 

 

 

 

Fig 1(c) Vector representation of tension at x 

Let the tension at the end points is T as shown in Fig 1(b). The forces 

acting, in the vertical direction, on the element of the string are  

T sin θ2 – T sin θ1 

using the Newton’s second law of motion we know that F = m a, and 

therefore 

 , ( , )x u x t

  

  

cosxT T  

  
sinuT T  

  
T 

sinuT T  

     

 , ( , )x x u x x t 

 

cosxT T  
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 2 1 T sin  –  T sin ttsu                                                             (1) 

Where s is the arc length,  is the line density of the string and therefore 

 m =  s and   tta u . 

By assumption 5, we have  

 s x     

 2 2sin tan ( , )xu x x t     and 1 1sin tan ( , )xu x t    at time t. 

Equation (1) can then be written as  

 [ ( , ) ( , )]x x ttT u x x t u x t xu     

or, equivalently,  

 
1

[ ( , ) ( , )]x x ttu x x t u x t u
x T





                                               (2) 

Now, we let 0x   which also implies 0u  , then by definition, 

 
0

1
lim [ ( , ) ( , )]x x xx
x

u x x t u x t u
x




    

and equation (2) becomes  

 

 
2

tt xxu c u ,                                                                             (3) 

where 

 
2 T

c


                                                                                   (4) 

(3) is known one – dimensional wave equation and c denotes the 

wave speed. It is a transverse wave and it moves normal to the 

vibrating string.  

If some external force f per unit length is acting on the string then 

equation (3) can be given by   

 
2 ,tt xx

f
u c u F F


                                                       (5) 
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where f can be gravitation, impulse along the string at different values of 

time, resistance, pressure etc. 

This equation is hyperbolic. We will consider the initial and boundary 

conditions in detail when the solution is presented.  

Value Additions: 

A partial differential equation of second order i.e., 

xx xy yy x yAu Bu Cu Du Eu Fu G       

where A, B, C, D, E, F and G are constants, is said to be 

       (i) Elliptic if 2 4 0B AC    

       (ii) Parabolic if 2 4 0B AC   

       (iii) Hyperbolic if 2 4 0B AC  . 

 

Example 1: Prove that  
2 ,tt xxu c u g  is the equation of motion of a 

long string where g is the gravitational acceleration. 

Solutions: Total force acting on the portion of the string of length x  in 

the vertical direction is 

 2 1T sin  –  T sin x g   . 

Therefore the equation of motion is given by  

 2 1T (sin  –  sin ) ttx g xu     . 

Also, by assumption 5, we have  

 1 1sin tan ( , )xu x t   and 2 2sin tan ( , )xu x x t     

This implies, 

 
( , ) ( , )x x

tt

u x x t u x tT
g u

x



 

  
  

 
 

As 0x  , we get 
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2 ,tt xxu c u g   where 

2 T
c


 . 

Example 2: (a) Show that the equation 
2 ,tt t xxu u c u  represents the 

damped wave equation of a string where the damping force is directly 

proportional to the velocity and  is a constant. 

(b) Show that for a restoring force which is directly proportional to the 

displacement of a string the resulting equation is   

 
2 ,tt t xxu u bu c u    

Where b is a constant. 

Solutions: 

(a) Damping force F1 α ut  => F1 = a ut, where a is a constant. 

Total force in vertical direction is  

 2 1 1T sin  –  T sin F x    

Therefore the equation of motion is 

  2 1 1T (sin  –  sin ) ttF x xu      

Also, by assumption 5, we have  

 1 1sin tan ( , )xu x t   and 2 2sin tan ( , )xu x x t     

This implies, 

 1

( , ) ( , )x x
tt

u x x t u x tT
F u

x



 

  
  

 
 

As 0x  , we get 

 
2

1tt xxu c u F                                           where 
2 T

c


 . 

 
2

xx tt tc u u au                                   ( since F1 = a ut ) 

(b) Restoring force,    F2 α u  =>  F2 = b u where b is a constant. 

Equation of motion is given by 

 2 1 1 2T (sin  –  sin ) ttF x F x xu        
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Proceeding in the similar manner as in part (a), we get

 
2

tt t xxu u bu c u   . 

3.1. Mathematical modelling of The Vibrating Membrane: 

A stretched vibrating membrane is an extension into a second space 

dimension of the vibrating string problem. It occurs in many problems in 

mathematics and physics. We wish to derive a describing equation for the 

deflection u of the membrane for any position (x, y) and for any time t. 

To get a simple equation describing the vibration of the stretched 

membrane, the following assumptions are considered: 

1. membrane is elastic and flexible, therefore offers no resistance to 

bending so shearing stresses are absent. 

2. No elongation of a single segment of the membrane and hence 

the tension is constant ( Hooke’s Law ). 

 

Fig 2. Element of vertically displaced membrane 

 

3. The tension per unit length is so large that the weight of the 

membrane is negligible. 

4. Only pure transverse vibration will be there. 



Mathematical Models 

Institute of Lifelong Learning, University of Delhi 

pg. 10 

 

5. The deflection is negligible as compared to the minimal diameter 

of the membrane so that the resulting change in diameter of the 

membrane has no effect upon the tension. 

6. The slope of deflection surface is small. 

Let us take a small element of the membrane. By assumptions 4 and 5, 

the area of the element is x y (Approx.). Let T be the tensile force per 

unit length and  T x  and T y are the forces acting on the sides of the 

element. Then the forces which are acting, in the vertical direction, on the 

element of the membrane are  

 2 1 4 3sin sin sin sinT x T x T y T y           

Also, by assumption 5, we have 

 

1 1 1

2 2 2

3 3 1

4 4 2

sin tan ( , )

sin tan ( , )

sin tan ( , )

sin tan ( , )

y

y

x

x

u x y

u x y y

u x y

u x x y

 

  

 

  



 



 

                                                 (6) 

Where 1x , 2x , 1y and 2y are the values of x and y between x & x x  and 

y & y y  respectively.  

Applying Newton’s second law of motion to an element of the membrane 

as shown in Fig. 2., we get 

 2 1 4 3(tan tan ) (tan tan ) ttT x T y x yu                                          (7) 

where x y   is the area of the element,  is the mass per unit area and 

ttu is the acceleration, calculated at some point in any region of 

consideration.   

Substituting values from equation (6) into equation (7), we get 

 2 1 2 1[ ( , ) ( , )] [ ( , ) ( , )]y y x x ttT x u x y y u x y T y u x x y u x y x yu                 (8) 

Dividing equation (8) by x y  , we get 

 
2 1 2 1

( , ) ( , ) ( , ) ( , )y y x x
tt

u x y y u x y u x x y u x yT
u

y x

 

  

   
  

 
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Now, taking the limit as 0x   and 0y  , we arrive at 

 
2 ( ),tt xx yyu c u u  ,                                                                 (9) 

where 

 
2 T

c


                                                                                  (10) 

(9) represents the two – dimensional wave equation and c denotes 

the wave speed. 

Value Addition: 

Note: If some external force f per unit length is acting on the membrane 

then two-dimensional wave equation can be given by   

2 ( ) ,tt xx xx

f
u c u u F F


                                             (11) 

 

4. Conduction of Heat in Solid: 

4.1. Derivation of heat equation: 

Let S be the closed surface that bounds an arbitrary domain D. Let T (x, 

y, z, t) is the temperature at each point (x, y, z) in a solid body D at any 

time t. By Fourier’s law, we know that the flow rate is directly proportional 

to the gradient of temperature. Therefore, the velocity of the heat flow in 

an isotropic body is given by 

         v T v k T                                                                      (12) 

where k (called thermal conductivity) is a constant. 

Since v is the velocity of heat flow, amount of heat leaving D per unit 

time is .
S

v N ds and by using Gauss Divergence theorem, we get, 

 2. ( ) ( . )
S D D D

v N ds div k T dv k T dv k T dv                             (13) 

Since this is the amount of heat leaving D per unit time, it must be equal 

to the heat integral (by definition). Thus, 
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 2 2

D D

T T
k T dv dv k T

t t
   

 
       

    

This implies, 

 2T k
T

t  


 


 

Or, 

 2T k
K T where K

t  


  


                                                     (14) 

Equation (14) is known as one – dimensional heat equation. The 

above equation is parabolic and will be solved in the subsequent chapters. 

 

 

Value Addition: 

Isotropic: A body is said to be isotropic with respect to some property 

(Pressure, density etc.) if that property is the same in all direction at a 

point. 

Note: The total heat contained in a body D with uniform density δ and 

specific heat σ is 
D

T dv   where T is the temperature. Thus, the amount 

of heat leaving D per unit time is given by the derivation  

 
D D

T
T dv dv

t t
   

  
   
  
                                                   (15) 

 

Example 3: Putting i k tU e u  in the wave equation 2

ttU U  and also 

putting 
2k tU e u in the heat equation 2 ,tU U  prove that u(x, y, z) 

satisfies the equation 

2 2 0u k u   (Helmholtz equation) 

Solutions: Putting i k tU e u  in the wave equation 2

ttU U , we get, 

 2 2i k tU e u    

Also, 
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2 2 2

i k t

t

i k t i k t

tt

U i k e u

U i k e u k e u



 
 

 
2 2 2

2 2 0

i k t i k t

ttU U k e u e u

u k u

    

  
 

Again, putting
2k tU e u  in the heat equation 2 ,tU U we get, 

 

2

2

2 2

2

k t

k t

t

U e u

U k e u





  


 

 
2 22 2k t k tk e u e u     

and therefore, 

 2 2 0u k u    

 

5. The Gravitational Potential: 

There are a number of physical situation that are modelled by Laplace’s 

equation. We choose the force of attraction of particles to demonstrate its 

derivation. Suppose that the two particles P and Q having masses m and 

M respectively are separated by a distance r. The Newton's gravitational 

law states that the attraction force between the particles is directly 

proportional to the product of m, M and 1/r2. So we have,   

 
2

m M
F

r
  

Consequently, 

 
2

m M
F G

r
                                                                              (16) 

where G is the gravitational constant. 
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Fig 3 Two particles separated by a distance r 

Choosing (Taking) G = 1, we have, 

 
2

m M
F

r
                                                                                 (17) 

If  r PQ , then force per unit mass (M = 1) at Q due to mass (m) at P is 

given by 

 
2 3

m r mr m
F

r r r r

   
     

  
                                                         (18) 

Equation (18) is known as the intensity of gravitational field force. 

Let us consider a particle of unit mass (M = 1) moves in the influence of 

the attraction of mass m at P from infinity up to Q. Then the work done 

by the force F is given by 

 
r r

m m
W F dr dr

r r
 

 
    

 
                                                              (19) 

Equation (18) is known as the potential at Q because of the particle at P, 

and is denoted by 
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m

V
r

                                                                                   (20) 

so that the force intensity at P is given by 

 
m

F V
r

 
  

 
                                                                      (21) 

Let r1, r2,……., rn be the distances of the masses m1, m2,……, mn respectively 

from Q. Then the attraction force per unit mass due to the system at Q is 

given by 

 
1 1

n n
i i

i ii i

m m
F

r r 

                                                                   (22) 

The work done by the force acting on a particle of unit mass is 

 
1

r n
i

i i

m
F dr V

r

                                                                      (23) 

Thus the potential satisfies the equation  

 2 2 2

1 1

0, 0
n n

i i
i

i ii i

m m
V r

r r 

 
      

 
                                            (24) 

For continuous distribution of mass in some volume R, the potential u is 

defined by 

 
1

( , , )
R

u x y z k dX dY dZ
r
                                                           (25) 

where k is a positive constant, ρ is the density of mass at Q(X, Y, Z) and 

     
2 2 2

r x X y Y z Z      is the distance between two points. 
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Fig 4 Continuous Mass Distribution 

Assuming the resulting function that we derive are continuous. We have, 

 
 

( , , )x

R

x X
u x y z k dX dY dZ

r

 
   , 

 
 

2

3 5

3
( , , )xx

R

x X
u x y z k dX dY dZ

r r

 
   

  
  

Similarly, 

 
 

2

3 5

3
( , , )yy

R

y Y
u x y z k dX dY dZ

r r

 
   

  
   

 
 

2

3 5

3
( , , )zz

R

z Z
and u x y z k dX dY dZ

r r

 
   

  
  

Adding these results, we get 

 2 0xx yy zzu u u u      

The above equation is known as the Laplace equation or a potential 

equation and its solutions are called potential function or harmonic 

function.  
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Value Addition: 

Laplacian Operator: The operator 
2 2 2

2

2 2 2x y z

  
   

  
 is called Laplacian 

Operator. It is widely used in many physical phenomenon. 

 

Example 4: Determine the potential at Q when it is inside the body, (in 

the derivation of the Laplace equation, considering the potential at Q 

which is outside the body is ascertained)  and show that it satisfies the 

equation 

2 4 ,u    ( Poisson equation) 

where ρ is the density of the body. 

Solution: We know that the flux is given by the equation 

 4 ,
S V

F dS dV                                                                        (26) 

Also, by the divergence theorem, 

   2

S V V V

F dS F dV V dV V dV                                               (27) 

( F V force is the gradient of P.E. with reversed sign )     

By (26) & (27), we get, 

 24
V V

dV V dV      

  24 0
V

V dV     

If the integrand is continuous, 

 2 24 0 4V V         
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6. Conservation Law: 

Statement: The flux of a material across the closed bounded surface S of 

the domain is equal to the rate of change of the total amount of that 

material contained in a fixed volume V. 

Let ρ (x, t) be the density of the material and q (x, t) is the flux vector, 

then by the mass conservation law, we have 

  .
V S

d
dV q n dS

dt
                                                                   (28) 

where dS is the surface element and dV is the volume element of the 

boundary surface S. The outward unit normal vector to S is denoted by n . 

By Gauss divergence theorem, we know that  

  .
S V

q n dS div q dV   

From, eqn. (28),  

  .
V S V

q n dS divq dV
t


 

    

=> 0
V

divq dV
t

 
  

 
                                                                    (29) 

This result vanishes everywhere in the domain for continuous integrand 

and is valid for arbitrary volume V. Therefore, we get a differential form 

of the conservation law given by 

 0div q
t


 


                                                                            (30) 
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Fig 5: Volume V and the surface element dS with the outward unit normal 

vector n of a closed domain bounded by the surface S  

The one – dimensional form of eqn. (28) is given by 

 0
q

t x

 
 

 
                                                                             (31) 

Value Additions: 

Fundamental principle of conservation law (conservation of momentum, 

energy and angular momentum) have far-reaching implications as 

symmetries of nature which is not violated and serves as a strong 

constraint on any theory in any branch of science. 

 

7. The Burgers Equation: 

If the solution of above equation (2.31) is discontinuous or for any shock 

waves, we consider q = Q (ρ) and allow a jump discontinuity for ρ and q. 

Let us assume q as a function of density gradient ρx as well as ρ. For a 

simple model, 

   xq Q v                                                                             (32) 

where v is a constant(positive). 
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Differentiating equation (30) partially with respect to x, we get, 

  ' x xx

q
Q v

t
  


 


                                                                   (33) 

Substituting equation (31) into equation (29), we get,  

  t x xxC v                                                                          (34) 

where  

        ' ' '' xC Q C Q        

Multiplying eqn. (34) by  ' .tC C C t    , we get, 

     2' ''t x xx xx xC CC vC v C C                                                (35) 

If we take Q(ρ) as a quadratic function in ρ, then C(ρ) is linear in ρ and 

therefore  '' 0C   . Therefore, equation (35) becomes 

 t x xxC CC vC                                                                           (36) 

For a simple model of turbulence, we have replaced C by the fluid velocity 

field u(x, t) to get 

 t x xxu uu vu                                                                             (37) 

where v is the kinematic viscosity. 

Equation (37) is known as Burgers equation.  

Value Additions: 

Burgers equation represents the balance between diffusion, non – 

linearity and time evolution. In fluid dynamics, for diffusive waves, the 

simplest nonlinear model equation is the Burgers equation. 

Example 5: In fluid dynamics, derive the continuity equation 
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  0,t div u    

and Euler’s equation of motion 

  . 0,tu u grad u grad p    
 

 

      

Fig 6: Flow from an incremental volume 

Solution: Let S be closed surface drawn in the fluid. Let S contains 

volume V of the fluid. Let P(x, y, z) be any point of the fluid within S. Let 

ρ(x, y, z, t) be the fluid density at P at time t. Let δS denote elements of 

the surface S enclosing P. Let n


 be the unit outward normal drawn at P 

and  , , ,u x y z t  be the fluid velocity at P. Then the normal component of u  

measured outward from P is .u n . 

Mass of the fluid flowing out δS per unit time is equal to 

    . . .u n S u n S u ds       

 Mass of the fluid flowing out of S per unit time is given by 

  . .
S V

u dS u dV     

Also, mass of the fluid contained within the volume V at time t is 
V

dV  
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 Rate of decrease of mass of the fluid within V is 
V V

dV dV
t t




 
 
    

By conservation law,  

    .
V S S V

d
dV u n dS n u dS u dV

dt
            

(By divergence theorem) 

 

 

 

,

0

V V

V

dV u dV
t

u dV
t








  



 
    

 



 

Since the integrand is continuous, therefore 

   0u
t





 


 

which is the equation of continuity. 

Euler’s equation of motion: Let a closed surface S, enclosing a volume 

V be moving with the fluid so that S contains the same number of fluid 

particles at any time t. 

Consider a point P inside S. Let ρ is the fluid density, u  is the fluid 

velocity and dV be the elementary volume enclosing P. 

Since the mass ρ dV remains unchanged throughout the motion, therefore  

   0
d

dV
dt

   

 Momentum = mass x velocity. 

 
V V V

dM du
M u dV u dV dV

dt dt
          
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Let n


 be the outward unit normal vector on the surface element dS. 

Suppose F  is the external force per unit mass acting on the fluid, and p 

be the pressure at any point on the element dS. 

  Total surface force is   

    .
V S V V V

F dV p n dS F dV pdV F p dV              

By Newton’s second law of motion,  

Rate of change of momentum = Total applied force 

   0
V V V

du du
dV F p dV F p dV

dt dt
   

 
       

 
    

If the integrand is constant. Then,  

 0
du

F p
dt

     

If no external force is acting then F  = 0.  

 0
du

p
dt

    

Now, .
du

u u
dt t

 
   

 
, so by the above equation, we have 

  . 0tu u grad u grad p    
 

 

Summary: 

We now end this chapter by giving a summary of it. In this chapter we 

have covered the following 

 

(1)  The wave equation with reference to vibrations of stretched 
flexible string for one-dimensional case has been derived. 
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(2)  The two dimensional wave equation that describes the deflection 

of a stretched vibrating membrane for any position and any time 
has been derived. 

(3)  One – dimensional heat equation has been derived and our 
discussion of heat transfer has included heat conduction only. 

(4)  The Laplace equation has been derived by choosing force of 
attraction of particles. 

(5)  We have stated conservation law and derived the Burgers 
equation. 

 

Exercise: 

1. While arriving at the equation describing the motion of the string, 

 we assumed the weight to be negligible. Determine the describing 

 equation including the weight of the string in the derivation. 

2 . Derive the one – dimensional heat equation 

,t xxu k u  

 where k is a constant and also show that when the heat lost by 

 radioactive exponential decay of  the material in the bar is also 

 considered then the one-dimensional heat equation becomes 

,x

t xxu k u he    

 where h and α are constant. 

 

3. Write the one – dimensional heat equation that could be used to 

 determine the temperature in a flat circular disk with the flat 

 surface insulated. 

4. Express Laplace’s equation using spherical coordinates. 

5. Show that the Euler equation for an inviscid incompressible fluid 

 flow under the body force, F  , are  

1
. , 0.tu u u p divu


       

6. Verify that the vorticity u  satisfies the vorticity equation  
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. .
D

u u
Dt t

 



   


 

 Give the interpretation of this vorticity equation. Also show that 

 0,
D

Dt


 in two dimensions. 

Glossary: 

B Burgers Equation: For a simple model of turbulence, second order 

 partial differential equation denoted by t x xxu uu vu   where u(x, t) 

 denote the fluid velocity and v is the kinematic viscosity is known as 

 Burgers equation. 

G Gravitational Potential: The Newton's gravitational law states that 

 the attraction force between the particles is directly proportional to 

 the product of m, M and 1/r2. So we have,   

 
2

m M
F

r
  Consequently, 

2

m M
F G

r
  

 where G is the gravitational constant. 

L Laplacian Operator: The operator 
2 2 2

2

2 2 2x y z

  
   

  
 is called 

 Laplacian Operator. It is widely used in many physical phenomenon. 

O One-dimensional Heat Equation: A second order partial differential 

 equation 2T k
K T where K

t  


  


, is called one-dimensional heat 

 equation. 

O One-dimensional Wave Eqaution: A second order partial differential 

 equation  
2

tt xxu c u  where 
2 T

c


 , is called the one-

 dimensional wave equation and c is called the wave speed. 
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T Two-dimensional Wave Equation: A second order partial differential 

 equation 
2 ( )tt xx yyu c u u  where 

2 T
c


 , is called the two-

 dimensional wave equation. 
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